N

Devops Practices @Myntra
for Resiliency in Cloud

I =B
About Myntra & Jabong M

Over 30 million active users (Myntra & Jabong)

Over 5 million reqs/min during peak traffic.

Targeted $2 Billion run rate in 2018 for Myntra & Jabong

300+ Microservices managed by 470+ engineering team.

Around 50K+ CPU in Hybrid cloud setup between 4 data-centers.

Mix of bare-metal, AWS, FK cloud and Azure in multiple geography, powered
by CDN partners like Akamai and Cloudinary.

EHlTSSSSTE e X0
What DevOps Do? M

Everything as code Application monitoring
Automate everything Rapid feedback
Continuous Integration/Delivery Rebuild vs. Repair
Application is always “releaseable” Delivery pipeline

D N .
Devops goals at Myntra®? M

Reduce MTTR during outages and have every incident taken to closure with
proper RCA and action item.

Implement a successful monitoring strategy to provide insights and increase
operational efficiencies.

Allow engineering to onboard applications without having to deal with
complexities of configuration and operations.

Address preservation and recovery of business in event of outages

Bring predictability and simplicity to chaotic build/release processes and pre-

prod testing.

. ey - oo ooy

Business Demands

e 4 Mega ‘End of Season Sale’ Every Year.
e Attracts 25 Times More Users than BAU.
e 6-8 hours Peak Traffic

e 10-15 minutes Burst Window - 1 Million+ Users

D I
Needs & Challenges M

e Bottlenecks for scaling.
o Compute and Storage
o Networking
o Application Deployment
o Load Balancers
e Quick Scaling- On Demand
o Impossible with Bare Metal Environment
o Cloud is the Only Solution
e Challenges with Auto Scale on cloud
o Mass Deployment (>1000 Servers) in Real Time
o Propagation of Config Updates
o Not possible with Central resources like Load Balancers and Databases
o Software Quality
5

IR 'EA
How we fixed this? M

e C(Containerization- Docker Containers

o OS level virtualization of the Application

o Lightweight and Immutable (Images)
e Orchestration

o Kubernetes and Docker Swarm - Open Source

o Automated Deployment, Scaling and Container Management

o Kubernetes still runs on VMs

o Underlying Hardware should also be Provisioned at the same rate
e Terraform - Infrastructure as Code

o Automates Hardware Provisioning
- 000000000}

. ImmmwnEaEsE BB
How we fixed this? .. cont i\

e On demand server provisioning and Application deployments solved by
Kubernetes and Terraform

e Service config propagation to Load Balancer still an Issue

e Load balancer being a SPoF - Deteriorates Auto Scale Objective

e Service Discovery is the Solution

data
Registry
Services should ‘Register’ or ‘Deregister’ Service

Registers

Queries
Service Discovery Decentralises the Load Balancing /e © e

: i _ Micro uses Micro
Service A asks the Registry for Service B Service A Y] serviceB

Registry provides Service B’s Availability to Service A

Service Discovery

Service A communicates to Service B at destined host

- 'R EeE PR
Containerisation i\

P

Environment Q}

Image

Repository
N\

|

Build
Environment

Orchestration i\

e Application lifecycle Orchestration

o Dev — Build — Test — Release
e Infrastructure Orchestration

o On Demand (Sale Time)

o Disaster Recovery

S mERmmmmyaasE ===
Application Lifecycle Orchestration i\

Service
Image
Repository

@ s > ,Tagj @

0 g lt —— | Build Phase

T Build Env

e | :

Environments Image
Repository 12 Y
"

- 'IEEeE B
Infrastructure Orchestration M

With Terraform we write, plan and create underlying Infrastructure as Code
Ansible configures and attaches the nodes to Kubernetes/Swarm Cluster

In house Controller orchestrates the Deployment and Scaling

Q&A

